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 Conditional entropy  
The conditional entropy or conditional uncertainty (also called the equivocation of X 

about Y) is a measure to determine the uncertainty of a random variable Y depending on 

the value of another variable X. This condition occurs in a succession of symbols so that 

each symbol which affected the symbol next to it. The conditional entropy is calculated 

according to the following formula:  

H(Y|X)  = ∑   P(x,y) log2(1/P(y|x))            unit of information 

   H(Y|X)  = H(x, y) – H(x) 

   H(X|Y)  = H(x, y) – H(y)  

 Redundancy  
Redundancy: Is the concept in information theory and occurs due to correlation letters 

with each other, this means existence of unimportant or incorrect symbols in the message 

more than is necessary. The redundancy is calculated according to the following 

relationship: 
R = 1 – Actual Entropy 

 

Example 1: Simple language consists of A, B symbols and produces the following chain 

(AAABBAAAABBB). Calculate: 

1. Probability for each of A & B.  3. Entropy in the absence of correlation.  

2. Conditional entropy for the chain.  4. Redundancy of this language. 
 

 

1) P(A) = 7/12  = 0.583   P(B)  = 5/12 = 0.417 
 

2) H  = ∑ 
   Pi log2(1/Pi) 

= PA * log2 (1/PA) + PB* log2 (1/PB) 

= 7/12*3.322*log10(12/7) + 5/12*3.322*log10(12/5) 

= 0.583*3.322*0.234 + 0.417*3.322*0.38 

= 0.453 + 0.526 

= 0.979 bit 

Note : The Conditional Entropy occurs in a succession of symbols so that each symbol 

which affected the symbol next to it. 

3) P(A, A)  = 5/12  P(A|A) = P(A,A)/P(A) = 5/12 * 12/7 = 5/7 

P(A, B)  = 2/12  P(B|A) = P(A,B)/P(A) = 2/12 * 12/7 = 2/7 

P(B, A)  = 1/12  P(A|B) = P(A,B)/P(B) = 1/12 * 12/5 = 1/5 

P(B, B)  = 3/12  P(B|B) = P(B,B)/P(B) = 3/12 * 12/5 = 3/5 

https://en.wikipedia.org/wiki/Conditional_entropy
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H(Y|X)  = ∑     P(x,y) log2(1/P(x|y)) 

    = P(A, A) * log2(1/P(A| A)) +  P(A, B) * log2(1/P(B| A))  
        +  P(B, A) * log2(1/P(A|B)) + P(B, B) * log2(1/P(B|B))  

    = 5/12 * 3.322 * log10 (7/5) + 2/12 * 3.322 * log10 (7/2) 

       + 1/12 * 3.322 * log10 (5/1) + 3/12 * 3.322 * log10 (5/3) 

    = 0.417 * 3.322 * 0.699 + 0.167 * 3.322 * 0.544 

                                  + 0.083 * 3.322 * 0.193 + 0.25 * 3.322 * 0.222 

 = 0.202 + 0.302 + 0.193 + 0.184 = 0.881 bit 

4) R = 1 – actual entropy 

 = 1 – 0.881  

 = 0.119 bits with correlation 

Example2: Simple language consists of A, B symbols and produces the following chain 

(ABABBBBAAAABBABAB). Calculate: 

1. Probability for each of A & B. 

2. Entropy in the absence of correlation. 

3. Conditional entropy for the chain. 

4. Redundancy of this language. 
 

1) P(A) = 8/17 = 0.471          P(B) = 9/17 = 0.529 

2) H = ∑ 
   Pi log2(1/Pi) 

= PA * log2 (1/PA) + PB* log2 (1/PB) 

= 8/17*3.322*log10 (17/8) + 9/17*3.322*log10 (17/9) 

  = 0.471*3.322*0.327 + 0.529*3.322*0.276    

     = 0.512 + 0.485 = 0.997 bit 

3) P(A, A)  = 3/17  P(A|A) = 3/8 

P(A, B)  = 5/17  P(B|A) = 5/8 

P(B, A)  = 4/17  P(A|B) = 4/9 

 P(B, B)  = 4/17  P(B|B) = 4/9 
 

H(Y|X)  = ∑    P(x, y) log2(1/P(x|y)) 

  = P(A, A) * log2(1/P(A| A)) +  P(A, B) * log2(1/P(B| A))  
     + P(B, A) * log2(1/P(A|B)) + P(B, B) * log2(1/P(B|B))  

  = 3/17 * 3.322 * log10(8/3) + 5/17 * 3.322 * log10(8/5) 

     + 4/9 * 3.322 * log10(9/4) + 4/9 * 3.322 * log10(9/4) 

  = 0.176 * 3.322 * 0.426 + 0.294 * 3.322 * 0.204 

     + 0.444 * 3.322 * 0.352 + 0.444* 3.322 * 0.352 

  = 0.249 + 0.199 + 0.519+ 0.519 

  = 1.486 bits 
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4) R = 1 – actual entropy 

 = 1 – 1.486 

 = - 0.486 bits with correlation 
 

 Mutual Information  
Mutual Information is the term that refers to the measure of information transmission 

across channels by measuring the information shared between X and Y. In other words it is 

the amount of information that can be obtained by the recipient after receiving the message 

from the sender.  

Assume that X represents a series of sent symbols, Y represents a series of received 

symbols, for each X is sent, there is y received. So the mutual information I(Xi, Yj) can be 

calculated according to the following law:  

Mutual Information = information received - information lost 

 I(Xi, Yj) = I(Xi) – I(Xi|Yj)  

       = - log(P(Xi)(- (-log(P(Xi |Yj))) 

  I(Xi, Yj) = log
         

     
          unit of information 

 

Prove that: I(Xi, Yj) = I(Yj, Xi) = log
         

     
 

Proof: 

 P(Xi|Yj) = 
        

     
 

 

 I(Xi, Yj) = log 

        

     

     
 

 

 P(Xi, Yj) = P(Yj, Xi) = P(Xi) * P(Yj)  

 P(Yj, Xi) = P(Xi) * P(Yj | Xi) 

 

 I(Xi, Yj) = log 

              

     

     
 

 I(Xi, Yj) = log 
        

     
 

 



Information Theory   
 

COMPUTER SCIENCE DEPARTMENT                         BAIDA’A ABDUL QADER  ALBAGHDADY 

 

22 

 Limits Of Mutual Information 

Let X being a series of symbols sent, and Y is series of symbols received, the mutual 

information will calculated as follows: 

I(Xi, Yj) = log
        

     
 

 

 If X sent through a noiseless channel, it will calculated as follows: 

          P(Xi|Yj) = 1 

  And  

         I(Xi,Yj)MAX = log(
 

     
)  

         I(Xi,Yj)MAX = I(Xi)  

  

 If X sent through a noisy channel, it will calculated as follows: 

       P(Xi|Yj) = P(Xi) 

And 

       I(Xi,Yj)MIN = log(
     

     
) 

           = log(1)  

           = 0  No Information is transferred  

 

 

So the limit of mutual information is: 

 

 

 

  I(Xi,Yj)MIN = 0          I(Xi,Yj)Max = I(Xi) 

When  

 

  P(Xi|Yj) = P(Xi)       P(Xi|Yj) = 1 

 

 

 

 


